| WAP浏览 | RSS订阅   
首页 新闻资讯 品牌专区 联盟 营销策划 品牌推广 学院 研究中心 商业报告 互动 专家视点 精英访谈 论坛
商城 销售供应 需求发布 展会 行业展会 会展经济 政务 知识产权 科技金融 综合 网上咨询 人才猎头 下载
 
 
当前位置: 首页 » 资讯 » 行业观察 » 正文

罗百辉:2018年人工智能行业焦点解读与商业模式变革

分享: 更多
2018-03-23   来源:www.gmold.info   浏览:443    放大字体  缩小字体
2010年以来,基于深度学习的人工智能技术陆续在谷歌、Facebook、百度等顶尖互联网公司获得广泛应用;2016年,谷歌的战略重心已从“移动先行”全面转向“人工智能先行”;2017年被称为中国人工智能元年,相关行业投融资近千笔,本文将对2018年中国人工智能行业发展做详细解读,涵盖行业概况、创投趋势、行业应用案例、焦点问题等内容,用数据驱动行业发展。

人工智能时代下的商业变革

技术不足导致移动互联网难以催生出更多的新应用和商业模式,为突破瓶颈,新一轮更激动人心、更值得期待的技术革命风暴已经诞生,将成为未来10年乃至更长时间内IT产业发展的焦点,它的名字叫做“人工智能”(AI)。只有人工智能才能为“万物互联”之后的应用问题提供最完美的解决方案,它将成为IT领域最重要的技术革命,目前市场关心的IT和互联网领域的几乎所有主题和热点(智能硬件、O2O、机器人、无人机、工业4.0),发展突破的关键环节都是人工智能。人工智能是指计算机系统具备的能力,该能力可以履行原本只有依靠人类智慧才能完成的复杂任务。硬件体系能力的不足加上发展道路上曾经出现偏差,以及算法的缺陷,使得人工智能技术的发展在上世纪80—90年代曾经一度低迷。近年来,成本低廉的大规模并行计算、大数据、深度学习算法、人脑芯片4大催化剂的齐备,导致人工智能的发展出现了向上的拐点。——中国国际经济发展研究中心特邀研究员罗百辉

国际IT巨头已经开始在人工智能领域频频发力,一方面网罗顶尖人才,一方面加大投资力度,人工智能新的春天已经到来。自然语言处理、计算机视觉、规划决策等AI细分领域近期进展显著,很多新的应用和产品已经惊艳亮相。

由于技术的复杂度,未来5-10年内,专用领域的智能化是AI应用的主要方向,在更远的将来,随着技术的进一步突破,通用领域的智能化有望实现。无论是专用还是通用领域,人工智能都将围绕“基础资源支持-AI技术-AI应用”这三层基本架构形成生态圈。

在专用领域的智能化阶段,有能力的企业都希望打通三层架构。他们有的将从上往下延伸,如苹果、海康威视、小米等智能硬件企业;有的试图从下往上拓展,如百度、谷歌、IBM等互联网和IT的巨头,以及科大讯飞、格灵深瞳等AI技术新贵。产业格局更多地表现出“竞争”而非“合作”,整个行业依然处于野蛮生长的初期阶段。我们认为,该阶段最值得投资的是已经具备先发优势的AI企业,无论他目前处于哪一层都可以。

在未来通用智能时代,除了自然语言处理、计算机视觉等AI技术在某些领域的直接应用,人工智能更大的影响在于将重塑生活服务、医疗、零售、数字营销、农业、工业、商业等各行各业,并将引发新一轮IT设备投资周期。智能化的大潮即将来袭,万亿元的市场规模值得期待。

我们从两个维度选取人工智能产业的A股投资标的:首先是直接提供AI技术或有关设备的公司,然后是利用AI技术为不同行业提供解决方案的公司。

1.新技术革命登场,IT发展焦点将从互联网转向人工智能

发轫于2007年的移动互联网浪潮已经席卷全球,极大地改变了我们的生存状态。然而,就在资本市场热切地期待移动互联网催生出更多新应用服务、更多新商业模式的时候,由技术水平不足导致的发展瓶颈已然出现。与此同时,为突破上述瓶颈,新一轮更激动人心、更值得期待的技术革命风暴已经诞生,将成为未来10年乃至更长时间内IT产业发展的焦点,将再次并更加彻底地颠覆世界。这一轮技术革命风暴,它的名字叫做“人工智能”(Artificial Intelligence,以下简称AI)。

1.1基于互联网的应用服务发展已遭遇技术瓶颈,AI将成开锁金钥匙

基于PC的互联网、基于手机和平板电脑的移动互联网以及基于各种其他设备的物联网,其本质是解决了“连接”问题:连接人与人、人与物以及物与物,并且在连接的基础上创造出新的商业模式。以国内BAT三巨头为例,百度完成的是人与信息的对接,商业模式以网络广告为主;阿里解决的是人与商品的对接,电商是其商业模式;腾讯则实现了人与人的对接,依靠强大的免费社交软件吸引庞大的用户群,在此基础上利用增值业务和游戏来实现货币化。

尽管互联网的普及打造了包括谷歌、亚马逊、百度、阿里、腾讯、京东等一批巨头以及数量更为庞大的中小企业,基于网络的创新应用和服务类型也多种多样,但技术瓶颈的制约已经越来越明显:生活方面需求痛点的解决、生产领域具有适应性和资源效率的智慧工厂的建立、物流体系中更加方便快捷的配送方式建设等问题,都面临智能化程度不足带来的障碍。只有人工智能才能为“万物互联”之后的应用问题提供最完美的解决方案。正如罗百辉预言说,人工智能将成为IT领域最重要的技术革命,目前市场关心的IT和互联网领域的几乎所有主题和热点(智能硬件、O2O、机器人、无人机、工业4.0),发展突破的关键环节都是人工智能。

下面我们将通过一些例子和应用场景来更形象具体地展示上述瓶颈以及AI的重要性。

1.1.1智能冰箱还不能告诉我们做什么

由于生活节奏加快人们的空闲时间大为减少,做家务的时间日益显得不足,我们需要一款聪明的冰箱,让冰箱告诉我们做什么。来自奥维咨询的《中国家用冰箱食品浪费调查报告》显示,“每个家庭平均每年发生176次食物浪费现象。70%受访者表示,造成浪费的主要原因是一次购买太多和放入冰箱后忘记。智能冰箱的出现,不仅可以自行“清理门户”,采购新鲜食品,还能统筹安排,减少食材浪费,制作个性化食谱。它会根据食材新鲜与否,把不新鲜的食材调动到距离冰箱门最近的地方,提醒主人“它该吃了”。此外,智能冰箱能对用户的膳食合理性进行分析,制作菜谱。同时提示需要补充的食材,如果与生鲜电商联网的话,可以自动选择送货上门,直接实现食物的配送发货收获自动化和智能化。2014年美菱率先推出全球首台云图像识别智能冰箱ChiQ,突破全球智能冰箱技术门槛,该冰箱具备变频功能,可以用语音搜索、自动推荐等多种方式进行食谱推荐,并实现手机的远程查看和控制。

智能冰箱功能法的升级,提升用户体验和价值,背后的最大核心是自动识别技术的突破。图像识别技术通过图像采集系统得到食材图片,运用图像识别算法,转化成食品的信息列表。而通过图像识别技术,判断食材的种类是实现冰箱智能化的拐点。

可见,不是用户对智能家居的需求不存在,而是现有的技术无法支撑家居的智能化,这个瓶颈无法突破,智能家居永远是纸上谈兵。那么,解决这个问题的钥匙在哪里?人工智能技术的突破:图像识别背后的底层技术就来自于人工智能的算法和应用!

1.1.2O2O尚未实现生活服务智能化

试想这样一个场景,你想选择一个地方和朋友吃饭,首先你会打开一个应用,在这个过程中它会自动确定你所在的位置,然后你通过语音开始向其发出请求“我想在这附近找一家中式餐厅,下午将要与朋友一起就餐,消费价格适中。”应用根据你发出的请求及过往的生活习惯为你寻找到数十家备选方案优选列表,然后你可以根据兴趣与爱好选择直接确定方案,或者实时打开查看各家的类型、折扣、评分、环境、位置、菜品、用户评价等综合信息并进行筛选,这些信息综合在一起形成了你对某家餐厅的判断和最终的决策。这时你可以就一些问题与餐厅的服务人员进行实时的沟通,然后交付押金轻松的进行预订。预订好了餐厅之后,通过语音控制,你可以将信息转发给朋友。当你到了该出发赴约的时候,这个应用开始提醒你,并可以选择是否开启地图语音导航模式,为你提供位置和路线服务。从本质上说,消费者和商户存在各自信息获取不对称的问题,而O2O在于把服务业互联网化,将商户与消费者之间连接的更好,让信息不对称的问题都能解决,这不仅能够帮助商户,也能够帮助消费者。消费者对O2O的最大诉求主要是在前端信息的检索和获取,而商家的目的在于持续获取消费者,这主要通过前端提供消费者信息影响其购买决策,并通过后期客户管理增强与用户关系。

互联网的O2O商业模式气势汹汹的颠覆传统行业,似乎发展到现在好像开始止步不前了。目前点评网站、地图导航、预定网站、优惠券网站等很好地满足了消费者信息获取来源,但移动搜索引擎却未能很好满足消费者检索的需求,使他们可以方便地查找餐厅以及优惠地享受服务。综合来看,未来的O2O会是一个融合线下信息聚合、语音识别、自然语言解析、搜索引擎、点评信息聚合、预订服务、地图导航、NFC、CRM、语音以及实时沟通等功能为一体的基于位置的服务平台。然而,至今仍然悬而未决的技术瓶颈是:自然语言的解析。如何通过对用户的自然语言(文本+语音)等数据,结合知识图谱,推理出用户的需求并精准的推送用户所需的本地化生活服务?这扇大门的钥匙也是在人工智能技术的突破!

1.1.3无人机尚不能自主飞行

目前无人机虽然在军事和民用领域都得到了应用,但其智能化程度还远远不够,仍然需要人遥控操纵,尚未实现自主飞行。

设想一下你打开家里的窗子,一架无人机恰巧停在窗外,你从无人机上取下自己购买的物品,然后拿出手机确认收到,无人机才缓缓飞走,去寻找下一个客户。或者,下午你要去某咖啡馆与客户交流,恰巧有一个快递要送来。你提前通知快递公司,让无人机指挥中心更改送货路线,通知无人机将快递送到咖啡馆。物流体系使用无人机取代人工,实现货物派送的设想一旦实现,将大大提高配送效率,减少人力、运力成本,可以说承载了人们对于未来物流的梦想。但这一梦想如果要得以实现,必须要使无人机具备感知和规划的智能。

低空以及在建筑物内部飞行会遭遇很多的障碍物,即使预先设定飞行线路,也无法避免临时出现的障碍(比如写字楼里突然关上的门),这就需要无人机具备视觉功能、不确定性环境下的路线规划以及行动能力。此外,为保证准确投递,无人机或许还要具备人脸识别的能力,可以通过预先发送的照片识别出收货人。这些感知、规划和行动能力都属于人工智能技术。

1.1.4智能化是工业4.0之魂

第一次工业革命是随着蒸汽机驱动的机械制造设备的出现;第二次工业革命是基于劳动分工的,电力驱动的大规模生产;第三次工业革命是用电子和IT技术实现制造流程的进一步自动化;而如今,第四次工业革命正在来临!

“工业4.0”,是一个德国政府提出的高科技战略计划。这个概念包含了由集中式控制向分散式增强型控制的基本模式转变,目标是建立一个高度灵活的个性化和数字化的产品与服务的生产模式。在这种模式中,传统的行业界限将消失,并会产生各种新的活动领域和合作形式。创造新价值的过程正在发生改变,产业链分工将被重组。

从以上的描述中不难看出,工业4.0对智能化的要求涵盖更广,涉及机器感知、规划、决策以及人机交互等方面,而这些领域都是人工智能技术的重点研究方向。

2.人工智能技术“奇点”到来

在宇宙大爆炸理论中,“奇点”是指由爆炸而形成宇宙的那一点,即宇宙从无到有的起点。而在美国著名科学家雷·库兹韦尔(Ray·Kurzweil:发明了盲人阅读机、音乐合成器和语音识别系统;获9项名誉博士学位,2次总统荣誉奖;著有畅销作品《奇点临近》,现任奇点大学校长)的理论中,“奇点”是指电脑智能与人脑智能相互融合的那个美妙时刻。我们认为,这个美妙时刻正在到来。

2.1 什么是人工智能:从“smart”到“intelligent”

目前市场上所谓“智能”的设备或概念很多,从智能手机到智能家居等,但这些“智能”实际上是“smart”的含义,即灵巧;真正意义上的智能应该是“intelligent”的含义。

“人工智能”一词最初是在1956年达特茅斯学会上提出的。从学科定义上来说,人工智能(ArtificialIntelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。

人工智能的概念和定义有多种,下图中沿两个维度排列了AI的8种定义。顶部的定义关注思维过程和推理,而底部的定义强调行为。左侧的定义根据与人类表现的逼真度来衡量成功与否,而右侧的定义依靠一个称为“合理性”(Rationality)的理想的表现量来衡量。

如果从比较容易理解的角度来概括的话,人工智能是指计算机系统具备的能力,该能力可以履行原本只有依靠人类智慧才能完成的复杂任务。

人工智能的应用领域主要包含以下几个方面的内容:

自然语言处理(包括语音和语义识别、自动翻译)、计算机视觉(图像识别)、知识表示、自动推理(包括规划和决策)、机器学习、机器人学。

2.2 人脑的精密结构难以复制,人工智能技术曾一度受阻

2.2.1超大规模并行结构使得人脑功能强劲

人类的大脑中有数百至上千亿个神经细胞(神经元),而且每个神经元都通过成千上万个“突触”与其他神经元相连,形成超级庞大和复杂的神经元网络,以分布和并发的方式传导信号,相当于超大规模的并行计算(ParallelComputing)。因此尽管单个神经元传导信号的速度很慢(每秒百米的级别,远低于计算机的CPU),但这种超大规模的并行计算结构仍然使得人脑远超计算机,成为世界上到目前为止最强大的信息处理系统。

2.2.2计算机的传统结构制约人工智能的发展

美籍匈牙利科学家冯·诺依曼(JohnVon·Neumann)是数字计算机之父,首先提出了计算机体系结构的设想,目前世界上绝大多数计算机都采取此种结构,它也被称之为冯·诺依曼体系结构。简单来说,冯·诺依曼体系结构的基本特征有以下几点:

1、采用存储程序方式,指令和数据不加区别混合存储在同一个存储器中,指令和数据都可以送到运算器进行运算,即由指令组成的程序是可以修改的。

2、存储器是按地址访问的线性编址的一维结构,每个单元的位数是固定的。

3、指令由操作码和地址组成。操作码指明本指令的操作类型,地址码指明操作数和地址。操作数本身无数据类型的标志,它的数据类型由操作码确定。

4、通过执行指令直接发出控制信号控制计算机的操作。指令在存储器中按其执行顺序存放,由指令计数器指明要执行的指令所在的单元地址。指令计数器只有一个,一般按顺序递增,但执行顺序可按运算结果或当时的外界条件而改变。

5、以运算器为中心,I/O设备与存储器间的数据传送都要经过运算器。

6、数据以二进制表示。

人工智能对计算机性能的要求很高,尤其是在非数值处理应用领域。冯·诺依曼体系的串行结构和人脑庞大复杂的并行结构相去甚远,使得现有计算机系统难以迅速有效地处理复杂的感知、推理、决策等问题。硬件体系能力的不足加上发展道路上曾经出现偏差(希望直接在通用型的人工智能方面取得突破),以及算法的缺陷,使得人工智能技术的发展在上世纪80年代末到90年代曾经一度低迷。

2.3 四大催化剂齐备,人工智能发展迎来转折点

近几年来,随着技术的进步,人工智能的发展出现了显著的复苏趋势。我们认为,下述4个方面的原因带来了人工智能发展的向上拐点。

2.3.1云计算使成本低廉的大规模并行计算得以实现

上文中提到,冯·诺依曼体系的串行结构使得计算机无法满足人工智能对硬件的要求,而近年来云计算的出现至少部分解决了这个问题。

从概念上讲,可把云计算看成是“存储云+计算云”的有机结合,即“云计算=存储云+计算云”。存储云的基础技术是分布存储,而计算云的基础技术正是并行计算:将大型的计算任务拆分,然后再派发到云中的各个节点进行分布式的计算,最终再将结果收集后统一处理。大规模并行计算能力的实现使得人工智能往前迈进了一大步。

云计算的实质是一种基础架构管理的方法论,是把大量的计算资源组成IT资源池,用于动态创建高度虚拟化的资源供用户使用。在云计算环境下,所有的计算资源都能够动态地从硬件基础架构上增减,以适应工作任务的需求。云计算基础架构的本质是通过整合、共享和动态的硬件设备供应来实现IT投资的利用率最大化,这就使得使用云计算的单位成本大大降低,非常有利于人工智能的商业化运营。

值得特别指出的是,近来基于GPU(图形处理器)的云计算异军突起,以远超CPU的并行计算能力获得业界瞩目。

CPU和GPU架构差异很大,CPU功能模块很多,能适应复杂运算环境;GPU构成则相对简单,目前流处理器和显存控制器占据了绝大部分晶体管。CPU中大部分晶体管主要用于构建控制电路(比如分支预测等)和高速缓冲存储器(Cache),只有少部分的晶体管来完成实际的运算工作;而GPU的控制相对简单,而且对Cache的需求小,所以大部分晶体管可以组成各类专用电路、多条流水线,使得GPU的计算速度有了突破性的飞跃,拥有了惊人的处理浮点运算的能力。现在CPU的技术进步正在慢于摩尔定律,而GPU的运行速度已超过摩尔定律,每6个月其性能加倍。

CPU的架构是有利于X86指令集的串行架构,从设计思路上适合尽可能快的完成一个任务;对于GPU来说,它最初的任务是在屏幕上合成显示数百万个像素的图像——也就是同时拥有几百万个任务需要并行处理,因此GPU被设计成可并行处理很多任务,天然具备了执行大规模并行计算的优势。

现在不仅谷歌、Netflix用GPU来搭建人工智能的神经网络,Facebook、Amazon、Salesforce都拥有了基于GPU的云计算能力,国内的科大讯飞也采用了GPU集群支持自己的语音识别技术。GPU的这一优势被发现后,迅速承载起比之前的图形处理更重要的使命:被用于人工智能的神经网络,使得神经网络能容纳上亿个节点间的连接。传统的CPU集群需要数周才能计算出拥有1亿节点的神经网的级联可能性,而一个GPU集群在一天内就可完成同一任务,效率得到了极大的提升。另外,GPU随着大规模生产带来了价格下降,使其更能得到广泛的商业化应用。

2.3.2大数据训练可以有效提高人工智能水平

机器学习是人工智能的核心和基础,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。该领域的顶级专家Alpaydin先生如此定义:“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。”

我们已经进入到大数据时代,来自全球的海量数据为人工智能的发展提供了良好的条件。

根据IDC的监测统计,2011年全球数据总量已经达到1.8ZB(1ZB等于1万亿GB,1.8ZB也就相当于18亿个1TB的移动硬盘,人均200GB,这些信息的量相当于可以填充572亿个32GB的iPad),而这个数值还在以每两年翻一番的速度增长,预计到2020年全球将总共拥有35ZB的数据量,增长近20倍。

2.3.3“深度学习”技术的出现

“深度学习”是机器学习研究中的一个新的领域,它模拟人类大脑神经网络的工作原理,将输出的信号通过多层处理,将底层特征抽象为高层类别,它的目标是更有效率、更精确地处理信息。深度学习自2006年由GeoffreyHinton教授和他的两个学生被提出后,使得机器学习有了突破性的进展,极大地推动了人工智能水平的提升。2013年,《麻省理工技术评论》把它列入年度十大技术突破之一。

人脑具有一个深度结构,认知过程是逐步进行,逐层抽象的,能够层次化地组织思想和概念。深度学习之所以有如此大的作用,正是因为它较好地模拟了人脑这种“分层”和“抽象”的认知和思考方式。

深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,“深度模型”是手段,“特征学习”是目的。区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。

深度学习使得人工智能在几个主要领域都获得了突破性进展:在语音识别领域,深度学习用深层模型替换声学模型中的混合高斯模型(GaussianMixtureModel,GMM),获得了相对30%左右的错误率降低;在图像识别领域,通过构造深度卷积神经网络(CNN),将Top5错误率由26%大幅降低至15%,又通过加大加深网络结构,进一步降低到11%;在自然语言处理领域,深度学习基本获得了与其他方法水平相当的结果,但可以免去繁琐的特征提取步骤。可以说到目前为止,深度学习是最接近人类大脑的智能学习方法。

深度学习引爆了一场革命,将人工智能带上了一个新的台阶,将对一大批产品和服务产生深远影响。

2.3.4“人脑”芯片将从另一个方向打开人工智能的大门

前面提到了现代计算机的冯·诺依曼体系结构阻碍了大规模并行计算的实现,导致人工智能发展受限。而今天人工智能发展面临突破,除了上文说的云计算、大数据、深度学习三个原因之外,另外一个方向的努力也是不容忽视的,那就是彻底改变了冯·诺依曼体系结构的“人脑”芯片。

“人脑”芯片,也叫神经形态芯片,是从硬件方向对人脑物理结构的模拟。这种芯片把数字处理器当作神经元,把内存作为突触,跟传统·冯诺依曼结构不一样,它的内存、CPU和通信部件是完全集成在一起,因此信息的处理完全在本地进行。而且由于本地处理的数据量并不大,传统计算机内存与CPU之间的瓶颈不复存在了。同时神经元之间可以方便快捷地相互沟通,只要接收到其他神经元发过来的脉冲(动作电位),这些神经元就会同时做动作。

3.人工智能产业发展加速明显

技术“奇点”的到来使得人工智能发展明显加速,这从产业层面能够得到有力的佐证:我们已经能够看到IT业对人工智能的投入显著加大,新型的应用或产品也不断问世。

3.1 国际IT巨头频频放“大招”

IT领域的国际巨头近年来在人工智能领域频频发力,一方面网罗顶尖人才,一方面加大投资力度,这也昭示着人工智能新的春天已经到来。

2013年3月,谷歌以重金收购DNNresearch的方式请到了GeoffreyHinton教授(上文提到的深度学习技术的发明者);2013年12月,Facebook成立了人工智能实验室,聘请了卷积神经网络最负盛名的研究者、纽约大学终身教授YannLeCun为负责人;2014年5月,有“谷歌大脑之父”美称的AndrewNG(吴恩达)加盟百度,担任首席科学家,负责百度研究院的领导工作,尤其是“百度大脑”计划。这几位人工智能领域泰斗级人物的加入,充分展示了这些互联网巨头对人工智能领域志在必得的决心。

根据量化分析公司Quid的数据,自2009年以来,人工智能已经吸引了超过170亿美元的投资。仅去年一年,就有322家拥有类似人工智能技术的公司获得了超过20亿美元的投资。自2013年以来,Yahoo、Intel、Dropbox、LinkedIn、Pinterest以及Twitter也都收购了人工智能公司。过去四年间,人工智能领域的民间投资以平均每年62%的增长速率增加,这一速率预计还会持续下去。

3.2 新的AI应用和产品屡有惊喜

1 、自然语言处理(NLP)
SkypeTranslator是由Skype和微软机器翻译团队联合开发,整合了微软Skype语音和聊天技术、机器翻译技术、神经网络语音识别打造了一款面向消费者用户的产品,2014年5月在微软Code大会上推出。两个不同语种的人借助SkypeTranslator可实现无障碍交谈,当你说出一个完整的句子后,系统便会开始进行记录翻译,对方即可听到翻译后的句子,并可通过字幕显示在屏幕上。这个实时语音翻译系统能够识别不同用户间的不同语言不同口音的说话方式。

目前,SkypeTranslator还处在早期开发阶段,但这一实时语音翻译功能有可能帮助改变世界未来的交流方式。比如在线教育,2014年12月,微软正式推出了SkypeTranslator预览版,让来自美国和墨西哥的小学生使用各自母语就能进行语音通话。它可以识别美国小学生的英文语句并将其翻译为西班牙语,然后以文本的形式呈献给墨西哥小学生,反之亦然。微软计划将SkypeTranslator服务推向教育领域,如此一来全世界各地的学生都能无障碍聆听任何语言的课程,显然这对于促进全球教育进步有着非比寻常的意义。

2、计算机视觉(CV)
(1)格灵深瞳的智能视频监控系统

在安防领域,摄像头已经得到大规模的使用,但监控的有效性依然面临两个严峻的挑战:
1、摄像头只能起到记录功能,识别还要依靠人眼,真正能实时监控到的场景非常有限:一个像机场大小的公共场所,摄像头的数量能够达到几万台,而同一时间负责监控视频的安保人员大概只有几个人;此外,视频监控往往都采用画面轮播机制,每过一定时间自动切换屏幕上显示的监控视频画面。所以,那些真正有信息价值的画面被人看到、注意到的几率就很小。

2、难以有效查询历史记录。据估计全球监控视频记录的存储已经消耗了75%的硬盘资源,以某广场为例,每天产生的监控视频数据,刻成光盘摞起来,甚至超过埃菲尔铁塔的高度。要在如此庞大的数据库里依靠人眼寻找某个特定画面或犯罪嫌疑人,需要动用大量的人力资源,并且效率低下。

格灵深瞳是一家专注于开发计算机视觉的人工智能公司,致力于让计算机像人一样主动获取视觉信息并进行精确的实时分析。公司成立于2013年初,成立不久就获得真格基金和联创策源的天使投资,并于2014年6月获得红杉资本数千万美元的A轮投资。

格灵深瞳通过研发三维视觉感知技术,实现对人物的精确检测、跟踪,对动作姿态(包括暴力、跌倒等危险行为)和人物运动轨迹(包括越界、逆行、徘徊等可疑轨迹)的检测和分析。在自动场景和人物检测的基础上,自动给安保人员提供预警信号,主动提醒、报告异常,保障安保人员“看得到”。同时,格灵深瞳利用感知技术抽象出人物的特征,从非时间的维度进行监测、跟踪、搜索,真正做到“找得到”。

目前格灵深瞳的视频监控系统已经在对安防要求较高的银行进行应用测试。如果该技术投入大规模商业化应用,将有效改善上文提到的现有视频监控的缺陷,是人工智能改变世界迈出的非常积极的一步。

(2)Face++的人脸识别云服务

Face++是一个人脸识别云服务平台,通过它提供的开放服务,开发者可以低成本的在自己的产品中实现若干面部识别功能。开发者和合作方通过Face++提供的API接入和离线引擎就可以享受现成的人脸检测、分析和识别等服务。Face++人脸识别技术主要有以下几种基本功能:

1)人脸检测:从图片中快速、准确的找到所有的或者有某些特征的脸。

2)人脸分析:通过人脸,对人的性别、年龄、情绪的信息进行提取。

3)人脸识别:匹配给定人脸的相似性,或者从成万上亿的人脸资料库中搜索、返回最相似的人脸索引。

Face++为美图秀秀、美颜相机App提供诸如:人脸检测、人脸追踪、关键点检测技术,可精准定位人脸中需要美化的位置,实现精准自动人脸美化,但这些仅是人脸识别的初级阶段。此外在稍高级的应用阶段——搜索领域,Face++所做的人脸识别为世纪佳缘提供服务,用户可根据自己对另一半长相的需求去搜索相似外貌的用户,当然这个搜索需要在数据库中进行,可以是世纪佳缘的数据库、未来可以是社交网络上的数据库、更可以是在通用搜索引擎中。第二个是Face++与360搜索达成了合作,在360的图片搜索中使用到相关的技术。而在另一块安全领域,Face++推出了APP“云脸应用锁”,扫描一下人脸和设置一下备用密码,就可以将需要加密的应用添加到需要保护的应用程序中。这样打开加密的应用时,就要事先经过一个人脸识别的监测,才能成功打开此应用。非常适合于图片、信息、支付软件等等拥有私密信息较高的应用程序当中。

3、知识表示、规划和决策
(1)Palantir:CIA的反恐秘密武器

大数据挖掘分析公司Palantir成立于2004年,该平台把人工智能算法和强大的引擎(可以同时扫描多个数据库)整合,可以同时处理大量数据库,并允许用户通过多种方式快速浏览相关信息。其产品已被美国中情局(CIA)、联邦调查局(FBI)、海陆空三军、联邦检察官、私人调查机构及其他客户所使用。类似CIA和FBI这样的情报机构有成千上万个数据库,并记录着不同的数据,比如财务数据、DNA样本、语音资料、录像片段以及世界各地的地图。将这些数据建立联系需要数年的时间,即便统一在一起,也很难驾驭不同种类的数据,比如说如何关联销售数据和监控录像资料,而Palantir公司所做的就是开发软件使这一切变得更容易。同时,Palantir还对各种安全问题高度敏感。Palantir引发了计算机时代的一场革命,它梳理所有可以获得的数据库,对相关信息进行确认,并他们整合起来。Palantir成立之初就获的CIA基金公司In-Q-Tel的投资,现在成为了美国情报机关在反恐战争不能缺少的工具。Palantir有效的解决了911后对情报工作提出的技术难题:如何从大量的数据中快速获取有价值的线索,可以说是CIA的反恐秘密武器。

Palantir公司相当低调,但非常受政府情报机关和华尔街的热捧。除了反恐,其关注重点也开始转向医疗、零售、保险和生物科技,比如利用Palantir可以侦查医疗保险诈骗以及发现病毒爆发的源头。现在,Palantir年收入已超过10亿美元,并且每年以3倍的速度增长。

(2)IBMWatson:认知能力强劲的多面手

Watson由90台IBM服务器、360个计算机芯片驱动组成,是一个有10台普通冰箱那么大的计算机系统。它拥有15TB内存、2880个处理器、每秒可进行80万亿次运算。IBM为沃森配置的处理器是Power7系列处理器,这是当前RISC(精简指令集计算机)架构中最强的处理器。Watson存储了大量图书、新闻和电影剧本资料、辞海、文选和《世界图书百科全书》等数百万份资料。每当读完问题的提示后,Watson就在不到三秒钟的时间里对自己长达2亿页的料里展开搜索。Watson是基于IBM“DeepQA”(深度开放域问答系统工程)技术开发的,DeepQA技术可以读取数百万页文本数据,利用深度自然语言处理技术产生候选答案,根据诸多不同尺度评估那些问题。IBM研发团队为Watson开发的100多套算法可以在3秒内解析问题,检索数百万条信息然后再筛选还原成“答案”输出成人类语言。每一种算法都有其专门的功能。

IBM公司自2006年开始研发沃森,并在2011年2月的《危险地带》(Jeopardy!)智力抢答游戏中一战成名后,其商业化应用有着清晰的脉络:2011年8月沃森开始应用于医疗领域;2012年3月,沃森则首次应用于金融领域,花旗集团成为了沃森的首位金融客户,沃森帮助花旗分析用户的需求,处理金融、经济和用户数据以及实现数字银行的个性化,并帮助金融机构找出行业专家可能忽略的风险、收益以及客户需求。美国农业银行信贷证券公司的一份研究报告中预测,Watson在2015年将为IBM带来26.5亿美元的收入。

例如在医疗领域,Watson已收录了肿瘤学研究领域的42种医学期刊、临床试验的60多万条医疗证据和200万页文本资料。Watson能够在几秒之内筛选数十年癌症治疗历史中的150万份患者记录,包括病历和患者治疗结果,并为医生提供可供选择的循证治疗方案。目前癌症治疗领域排名前三的医院都在运行Watson。研究表明,医疗信息数据正以每五年翻番的高速度增长。这为将下一代认知计算系统运用于医疗行业以改善医学的教学、实践和支付模式提供了史无前例的商机。

4.人工智能生态格局展望:巨头与新贵共舞

4.1人工智能将催生新一轮IT商业模式创新

自从PC互联网时代以来,到移动互联网,再到智能硬件时代,技术发展和商业模式创新一直处于相辅相成的状态中,一旦技术进步的红利被商业模式创新挖掘殆尽后,面临泡沫破裂的风险,直到下一轮技术革命浪潮再来,商业模式创新才会春风吹又生。

移动互联网时代,万物互联催生出了海量的数据,触摸屏的交互方式已经满足不了用户多元化的输入方式,商业模式创新已经遭遇了技术无法支撑的瓶颈,如果人工智能技术突破,无疑将催生出新的商业模式,带来巨大的市场想象空间。在罗百辉看来,现阶段移动互联网的商业模式创新已经将web2.0时代的技术红利消耗殆尽,未来新的商业模式的开发需要技术进步的支撑,人工智能是重要的技术突破点。

4.2 AI产业格局成形的路径:“底层—中层—顶层”的生态圈逐步清晰

人工智能发展的拐点已经到来,但需要指出的是,由于技术的复杂性,发展不会一蹴而就,必然经历一个由点到面,由专用领域(domain)到通用领域(generalpurpose)的历程,通用领域的人工智能实现还比较遥远。

以计算机视觉的应用为例,正常的成年人可以很容易地识别照片或视频里的多种场景和人、物,但对于计算机来说还难以做到。原因是识别是一个特征抽取的过程,而特征抽取是建立在识别模型的基础之上的,要做到通用识别,则必须对世间万物都建立一一对应的模型,工作量极大。而即使是同一事物,由于光线、角度、距离的原因,在不同的场景里也会呈现出很大的差异,这进一步增加了建立识别模型的难度。在未来5-10年之内,专用领域的定向智能化将是AI主要的应用发展方向。在更远的将来,如果人脑芯片等硬件架构能有所突破,运算能力有极大提高,则专用智能将逐步进化成为跨场景跨下游应用的通用智能。而AI的生态格局,无论是专用还是通用领域,都将围绕“底层-中层-顶层”的技术和产品架构逐渐成形。

人工智能产业生态格局的三层基本架构如下:

底层为基础资源支持层,由运算平台和数据工厂组成;

中层为AI技术层,通过不同类型的算法建立模型,形成有效的可供应用的技术;

顶层为AI应用层,利用中层输出的AI技术为用户提供智能化的服务和产品。

每一层架构中,都有不同的企业参与,最终形成围绕AI技术,产品和服务的生态圈。

4.2.1专用领域人工智能生态圈的格局
1、基础资源支持层实现路径:运算平台+数据工厂

基础资源支持层通过部署大规模GPU与CPU并行计算构成的云计算资源池(定义为超级运算平台)来解决AI所需要的超强存储和运算处理能力问题,并辅以能够抓取到汇聚了人类智慧的海量信息的大数据工厂作为数据集,为AI技术层的实现提供有利支持。

超算平台负责存储与运算。人类没有记忆就没有关联,也更不用说决策与创造,而构成记忆的基础正是有极大存储能力的脑容量,那么机器要模仿人脑也必然首先要拥有庞大的存储能力,海量数据的积累最终让机器的“存储”形成类似于人类的“记忆”。

百度在发展人工智能的道路上,首先做的也是不断扩大其存储能力。

除了存储的绝对容量之外,运算处理能力是第二个需要提升的硬实力。

运算处理能力有两个方面,第一是服务器规模,第二是特征向量大小。所谓特征向量简单理解的话就是指将文本语音图像视频等内容转化为机器能够读懂的一连串关键数据,数据越多,机器学习的就会越好,但对服务器的压力也会相应加大。百度能够仅用两年时间从10万特征向量直接飙升到200亿,足以见得百度服务器技术实力的雄厚。在这个过程中,还需要解决大规模GPU和CPU并行计算所带来的错误率提升以及散热难度加大等问题,因此,是否能够搭建超算平台成为了人工智能企业的重要进入门槛。

数据工厂实现分类与关联。数据工厂会对数据进行基础性的加工,而这种加工又非常关键。从人类的记忆联想模式分析,要调取某部分的记忆,就会很自然的联想到某个词,某个画面,某个音乐等等就能记起很多事情。这是因为人类大脑的神经连接结构允许我们这样去检索,而机器是不允许的,数据存储在硬盘上,机器想要找到某个数据,必须一个个访问过去,机器没有分类的概念。如果需要机器理解用户的语言,这种搜索技术也依然要机器的大脑配合才能达到,对每一个词的定义应该是一个库,而这个库中的每一个词又都各自构成库,数据工厂所依托的搜索算法,就是在这么一个数据海洋中去为他们建立管理,然后去索引。数据工厂相当于人脑中的记忆关联过程:将某个词同时与其他词或是某个场景等等建立起动态关联的过程。因此,通过数据挖掘和搜索算法对数据工厂中的知识库和信息库进行分类与关联的技术能力同样是人工智能企业的重要进入门槛。

2、AI技术层实现路径:面向特定场景的智能技术多姿多彩

AI技术层的作用是基于底层提供的计算存储资源和大数据,通过机器学习建模,开发面向不同领域的应用技术,例如语音识别、语义识别和计算机视觉等。

中间层的运行机制和人类的思维形成过程高度相似,是从感知到思考再到最终的决策行动甚至是创造,核心是机器学习技术的应用。首先,感知环节需要连接的是人、信息和物理世界,通过传感器,搜索引擎和人机交互来获取建模必须的数据,相当于人类的感知过程。依托于底层的高性能计算和弹性存储能力,中间层对感知到的数据进行建模运算,相当于人类的思考过程。最终,应用层利用数据拟合出的模型结果,对智能应用的服务和产品端输出指令,指挥包括机器人、无人机、3D打印等在内的各种设备响应用户需求。尽管目前由于思考层面的计算存储能力和建模能力的不足,导致人工智能还无法达到和人类相接近的“智慧”程度,但也足以支撑包括语音识别、图像识别和知识图谱在内的各种AI技术在特定场景下的应用。

另外一方面,在具体的应用场景中,更为优化的算法和更为准确的背景知识库数据集等因素都有助于在不提升计算资源的前提下实现更优的结果。这就给众多专业领域的AI公司带来了巨大的市场机遇。我们看到,专用智能的商业化应用风生水起,在这个领域,巨头和新贵都处于同一起跑线上,产业格局会趋于分散,先入者优势明显。我们判断,在数据、算法、云计算资源等几个关键因素中,数据的获得以及算法的优化是先入者的护城河,能够帮助他们在专用领域的特定场景下,迅速实现AI的商业化应用,从而抢占市场。我们关注到国内市场已经出现了这样的局面:语音识别领域的科大讯飞、计算机视觉方面的格灵深瞳、语义识别方面的小i机器人、人脸识别方面的face++等等细分行业龙头,都在具体应用场景的技术结果上,实现了对百度、谷歌、微软和IBM等AI巨头的超越。

3、AI应用层实现路径:以Nest为代表的专用智能产品和服务风起云涌

专用智能的应用水平不断提升将推进智能产品和服务的智能化程度。为了能够满足用户需求,智能产品和服务需要多种不同的AI技术支撑:

(1)谷歌的无人驾驶汽车,在驾驶过程中需要计算机视觉对不同路况做出相应的决策。为了实现无人驾驶,车辆需要配置激光测距系统、车道保持系统、GPS惯性导航系统、车轮角度编码器等设备,通过收集到的数据实时生成前方路面的三维图像,并用计算机视觉技术判断潜在的风险。毫无疑问,脱离了谷歌大脑的计算机视觉技术的支撑,谷歌无人驾驶应用就是空中楼阁。

(2)再以Nest的智能温控技术为例。为了能够通过不断地观测和学习用户习惯的舒适温度来对室温进行动态调整,并节约能源,Nest安装了六个传感器,不停地对温度、湿度、环境光以及设备周边进行监控和衡量,它能判断房间中是否有人,以决定是否自动关闭调温设备。依托于强大的机器学习算法,Nest则能自己学习控制温度。在使用这款调温器的第一个星期,用户可以根据自己的喜好调节室内温度,此时Nest便会记录并学习用户的使用习惯。为了能让居室变得更舒适,Nest还会通过Wi-Fi和相关应用程序与室外的实时温度进行同步,内置的湿度传感器还能让空调和新风系统提供适宜的气流。当用户外出时,Nest的动作传感器就会通知处理器激活“外出模式”。毫无疑问,脱离了深度学习技术的支撑,Nest的智能温控是无法实现的。

(3)微信朋友圈的推送广告服务。微信朋友圈的信息流(Feeds)广告推送基于自然语言解析、图像识别和数据挖掘技术,通过分析用户朋友圈语言特性,以及朋友圈图片内容,根据对用户收入和消费能力的分析来刻画用户画像,并决定投放何种广告。信息流广告与社交平台上好友发布的信息形式类似,广告本身内容将基于微信公众账号生态体系,以类似朋友圈的原创内容形式进行展现,融合在信息流中,在基于微信用户画像记性定向的同时,通过实时社交的混排算法,依托关系链进行互动传播。如果没有自然语言解析和图像识别等AI技术的支撑,微信的信息流广告推送服务的用户体验将大打折扣。

通过以上三个例子,我们不难看出,智能产品和服务是否能够切中用户的痛点需求,依赖于人工智能技术在产品背后能够给予多大的支撑。当前的智能产品市场之所以出现产品热,需求冷的局面,主要的症结在于所谓的智能硬件大多是“伪智能”产品,只是把功能性电子产品加上联网和搜集数据的功能,例如以手环为代表的可穿戴设备,以智能机顶盒为代表的智能家居设备等等。我们认为,杀手级的智能产品和服务必然是建立在强大的AI技术支撑下的。AI具体应用层应该是以Nest及更为先进的智能产品和服务为代表。我们梳理了当前智能产品和服务产业链上主要参与公司,典型的战略布局分别有:
(a)以海尔和美的为代表的家电企业转型智能家居方向;
(b)以小米和360为代表的互联网新贵从硬件入口开始卡位;
(c)以百度和谷歌为代表的互联网巨头从AI技术发力打造生态圈;
(d)以海康威视和大疆创新为代表的计算机硬件制造商转型智能硬件的行业应用。

4.2.2未来跨场景通用人工智能生态圈的格局
1、基础资源支持层实现路径:颠覆冯·诺依曼架构人脑芯片等技术将突破计算能力极限

未来的人工智能将致力于通过底层硬件架构的变革来实现。不同于现阶段底层对云计算的依赖,硬件模式将直接从芯片层面实现对人工神经网络的模拟,目标是构建一个硬件大脑。我们认为,这种突破将是下一代计算机科学的发展的重要方向。因为最近10年计算机科学更多关注的技术进步在于信息处理的标的这一层面,可以称之为“大数据”或者“数据大爆炸”时代。在不远的未来,数据大爆炸造成的结果是信息处理能力的瓶颈很快达到,因此,未来10年计算机科学的关注点将会转移到如何突破现阶段的计算能力极限,也就是颠覆冯·诺依曼的硬件架构。这个方向可能是AI在硬件设备上的一个终极解决方案,但从目前的技术成熟度上看,这条路径距离目标还有非常遥远的距离。目前已经看到的方向大致有以下三种:

(1)人脑芯片。2014年8月,IBM宣布研制成功了一款大脑原型芯片TrueNorth,主攻超级计算机专业学习领域。TrueNorth微芯片由三星电子为IBM生产,使用了三星为生产智能机和其它移动设备微处理器所使用的相同制造技术。IBM就该芯片的底层设计与纽约康奈尔大学(CornellUniversity)纽约校区的研究人员进行了合作。自2008年以来,这一项目获得了美国五角大楼高级计划研究局的5300万美元注资。这款芯片集成了100万个神经元和2.56亿个突触,与普通蜜蜂的大脑水平相当,而人脑平均包含1000亿个神经元和难以统计数量的突触。目前,这款芯片每秒每瓦可实现460亿次神经突触操作,它能像人脑一样去探测并识别模式。简而言之,当人脑芯片发现与字母不同部分相关联的模式时,能够将这些字母关联在一起,从而识别出单词和整句,但距离可以商用的智能化程度还遥不可及。除IBM外,芯片巨头英特尔、高通等公司也拥有了被工程师称之为“神经形态”(neuromorphic)的自主芯片设计。人脑启发软件公司Numenta创始人杰夫霍金斯(JeffHawkins)认为,类似TrueNorth这样的二元芯片未来将让位于能够更有效地模拟出人脑联系功能的芯片产品,找到正确的神经元结构需要经历多年的研究过程。

(2)量子计算。量子计算机是一种使用量子逻辑实现通用计算的设备。普通计算机存储数据的对象是晶体管电路的状态,而量子计算用来存储数据的对象是粒子的量子状态,它使用量子算法来进行数据操作。量子计算机的优势在于强大的并行计算速度。现在的计算机毕竟是二进制的,一遇到比较复杂的建模,像准确预测天气,预测更长时间后的天气等等,就会很费力费时;而超快量子计算机就能算,算得超快。因为当许多个量子状态的原子纠缠在一起时,它们又因量子位的“叠加性”,可以同时一起展开“并行计算”,从而使其具备超高速的运算能力。2014年,谷歌公司与科学家联手研制量子级计算机处理器,目的是未来使机器人像人类一样“独立思考问题”。但达到这个未来需要多久,目前我们还无法预知。

(3)仿生计算机。仿生计算机的提出是为了解决如何构建大规模人工神经网络的问题。通用的CPU/GPU处理神经网络效率低下,如谷歌大脑的1.6万个CPU运行7天才能完成猫脸的无监督学习训练。谷歌大脑实现模拟人脑的突触数量仅为100亿个,而实际的人脑突触数量超过100万亿。采用CPU/GPU的通用处理器构建数据中心,占地、散热以及耗电等都是非常严峻的问题。成本方面,这样级别的数据中心,除了谷歌、百度之外,其他互联网企业根本无力搭建。专门的神经网络处理器成为解决以上问题的钥匙。目前国内的陈云霁团队所搭建的寒武纪神经网络计算机正是基于仿生学的原理,通过寒武纪生物大爆炸中获取的线索,实现的无需访问内存,减少90%以上的片上通讯时间,并支持几乎现有主流机器学习算法的网络计算机。寒武纪神经网络计算机跟主流GPU相比,取得了21倍的性能和300倍的性能功耗比提升。

2、AI技术层的实现路径:通用智能实现跨场景的终极应用

在专用智能的时代,AI的技术应用是要针对不同的场景才能有效的。例如,格灵深瞳的计算机视觉技术,在安防视频监控领域可以识别出犯罪分子的异常行为举动并予以报警,但换做是商场中,格灵深瞳的三维摄像头就无法识别出客户的性别年纪等特征,并根据客户在不同柜台中逗留的时间,分析出客户可能偏好的产品并向其推荐。这两个应用场景其实都是依托于计算机视觉技术进行识别和响应的,但是专用智能时代,受到计算能力和建模能力的约束,同样的计算机视觉技术却无法解决跨场景的应用。

在未来,通用智能到来后,AI技术层的普适性将极大地提升。同样一个视频监控的摄像头加上背后的计算机视觉的云平台,放在不同的场合中,就能够根据用户不同的需求进行不同的识别并做出智能化的决策行为。这种终极应用的到来,必须依赖于计算资源上突破现有的能力极限,并且在建模上超越现阶段的深度学习算法的极限,真正让AI像人类一样去观察和思考并做出行为决策。

我们认为:在通用智能时代,进入门槛最高,护城河最宽的是底层AI资源支持的平台企业;其次是技术层中在细分领域具备核心竞争力的领先企业;门槛最低的是应用层的企业,标准化程度越高意味着同质化竞争越激烈,但消费电子的产品属性也将允许差异化竞争的空间。

解 读
《新一代人工智能发展规划》,提出到2020年,我国人工智能总体技术和应用与世界先进水平同步;到2025年,人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为带动我国产业升级和经济转型的主要动力;到2030年,人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。
新一代人工智能发展规划
一、战略态势
人工智能发展进入新阶段。经过60多年的演进,特别是在移动互联网、大数据、超级计算、传感网、脑科学等新理论新技术以及经济社会发展强烈需求的共同驱动下,人工智能加速发展,呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征。大数据驱动知识学习、跨媒体协同处理、人机协同增强智能、群体集成智能、自主智能系统成为人工智能的发展重点,受脑科学研究成果启发的类脑智能蓄势待发,芯片化硬件化平台化趋势更加明显,人工智能发展进入新阶段。当前,新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。

人工智能成为国际竞争的新焦点。人工智能是引领未来的战略性技术,世界主要发达国家把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,加紧出台规划和政策,围绕核心技术、顶尖人才、标准规范等强化部署,力图在新一轮国际科技竞争中掌握主导权。当前,我国国家安全和国际竞争形势更加复杂,必须放眼全球,把人工智能发展放在国家战略层面系统布局、主动谋划,牢牢把握人工智能发展新阶段国际竞争的战略主动,打造竞争新优势、开拓发展新空间,有效保障国家安全。

人工智能成为经济发展的新引擎。人工智能作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎,重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式,引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。我国经济发展进入新常态,深化供给侧结构性改革任务非常艰巨,必须加快人工智能深度应用,培育壮大人工智能产业,为我国经济发展注入新动能。

人工智能带来社会建设的新机遇。我国正处于全面建成小康社会的决胜阶段,人口老龄化、资源环境约束等挑战依然严峻,人工智能在教育、医疗、养老、环境保护、城市运行、司法服务等领域广泛应用,将极大提高公共服务精准化水平,全面提升人民生活品质。人工智能技术可准确感知、预测、预警基础设施和社会安全运行的重大态势,及时把握群体认知及心理变化,主动决策反应,将显著提高社会治理的能力和水平,对有效维护社会稳定具有不可替代的作用。

人工智能发展的不确定性带来新挑战。人工智能是影响面广的颠覆性技术,可能带来改变就业结构、冲击法律与社会伦理、侵犯个人隐私、挑战国际关系准则等问题,将对政府管理、经济安全和社会稳定乃至全球治理产生深远影响。在大力发展人工智能的同时,必须高度重视可能带来的安全风险挑战,加强前瞻预防与约束引导,最大限度降低风险,确保人工智能安全、可靠、可控发展。

我国发展人工智能具有良好基础。国家部署了智能制造等国家重点研发计划重点专项,印发实施了“互联网+”人工智能三年行动实施方案,从科技研发、应用推广和产业发展等方面提出了一系列措施。经过多年的持续积累,我国在人工智能领域取得重要进展,国际科技论文发表量和发明专利授权量已居世界第二,部分领域核心关键技术实现重要突破。语音识别、视觉识别技术世界领先,自适应自主学习、直觉感知、综合推理、混合智能和群体智能等初步具备跨越发展的能力,中文信息处理、智能监控、生物特征识别、工业机器人、服务机器人、无人驾驶逐步进入实际应用,人工智能创新创业日益活跃,一批龙头骨干企业加速成长,在国际上获得广泛关注和认可。加速积累的技术能力与海量的数据资源、巨大的应用需求、开放的市场环境有机结合,形成了我国人工智能发展的独特优势。

同时,也要清醒地看到,我国人工智能整体发展水平与发达国家相比仍存在差距,缺少重大原创成果,在基础理论、核心算法以及关键设备、高端芯片、重大产品与系统、基础材料、元器件、软件与接口等方面差距较大;科研机构和企业尚未形成具有国际影响力的生态圈和产业链,缺乏系统的超前研发布局;人工智能尖端人才远远不能满足需求;适应人工智能发展的基础设施、政策法规、标准体系亟待完善。

面对新形势新需求,必须主动求变应变,牢牢把握人工智能发展的重大历史机遇,紧扣发展、研判大势、主动谋划、把握方向、抢占先机,引领世界人工智能发展新潮流,服务经济社会发展和支撑国家安全,带动国家竞争力整体跃升和跨越式发展。
二、总体要求
(一)指导思想。
深入实施创新驱动发展战略,以加快人工智能与经济、社会、国防深度融合为主线,以提升新一代人工智能科技创新能力为主攻方向,发展智能经济,建设智能社会,维护国家安全,构筑知识群、技术群、产业群互动融合和人才、制度、文化相互支撑的生态系统,前瞻应对风险挑战,推动以人类可持续发展为中心的智能化,全面提升社会生产力、综合国力和国家竞争力,为加快建设创新型国家和世界科技强国、实现“两个一百年”奋斗目标和中华民族伟大复兴中国梦提供强大支撑。

(二)基本原则。
科技引领。把握世界人工智能发展趋势,突出研发部署前瞻性,在重点前沿领域探索布局、长期支持,力争在理论、方法、工具、系统等方面取得变革性、颠覆性突破,全面增强人工智能原始创新能力,加速构筑先发优势,实现高端引领发展。

系统布局。根据基础研究、技术研发、产业发展和行业应用的不同特点,制定有针对性的系统发展策略。充分发挥社会主义制度集中力量办大事的优势,推进项目、基地、人才统筹布局,已部署的重大项目与新任务有机衔接,当前急需与长远发展梯次接续,创新能力建设、体制机制改革和政策环境营造协同发力。

市场主导。遵循市场规律,坚持应用导向,突出企业在技术路线选择和行业产品标准制定中的主体作用,加快人工智能科技成果商业化应用,形成竞争优势。把握好政府和市场分工,更好发挥政府在规划引导、政策支持、安全防范、市场监管、环境营造、伦理法规制定等方面的重要作用。

开源开放。倡导开源共享理念,促进产学研用各创新主体共创共享。遵循经济建设和国防建设协调发展规律,促进军民科技成果双向转化应用、军民创新资源共建共享,形成全要素、多领域、高效益的军民深度融合发展新格局。积极参与人工智能全球研发和治理,在全球范围内优化配置创新资源。

(三)战略目标。
分三步走:
第一步,到2020年人工智能总体技术和应用与世界先进水平同步,人工智能产业成为新的重要经济增长点,人工智能技术应用成为改善民生的新途径,有力支撑进入创新型国家行列和实现全面建成小康社会的奋斗目标。

——新一代人工智能理论和技术取得重要进展。大数据智能、跨媒体智能、群体智能、混合增强智能、自主智能系统等基础理论和核心技术实现重要进展,人工智能模型方法、核心器件、高端设备和基础软件等方面取得标志性成果。

——人工智能产业竞争力进入国际第一方阵。初步建成人工智能技术标准、服务体系和产业生态链,培育若干全球领先的人工智能骨干企业,人工智能核心产业规模超过1500亿元,带动相关产业规模超过1万亿元。

——人工智能发展环境进一步优化,在重点领域全面展开创新应用,聚集起一批高水平的人才队伍和创新团队,部分领域的人工智能伦理规范和政策法规初步建立。

第二步,到2025年人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为带动我国产业升级和经济转型的主要动力,智能社会建设取得积极进展。

——新一代人工智能理论与技术体系初步建立,具有自主学习能力的人工智能取得突破,在多领域取得引领性研究成果。

——人工智能产业进入全球价值链高端。新一代人工智能在智能制造、智能医疗、智慧城市、智能农业、国防建设等领域得到广泛应用,人工智能核心产业规模超过4000亿元,带动相关产业规模超过5万亿元。

——初步建立人工智能法律法规、伦理规范和政策体系,形成人工智能安全评估和管控能力。

第三步,到2030年人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心,智能经济、智能社会取得明显成效,为跻身创新型国家前列和经济强国奠定重要基础。

——形成较为成熟的新一代人工智能理论与技术体系。在类脑智能、自主智能、混合智能和群体智能等领域取得重大突破,在国际人工智能研究领域具有重要影响,占据人工智能科技制高点。

——人工智能产业竞争力达到国际领先水平。人工智能在生产生活、社会治理、国防建设各方面应用的广度深度极大拓展,形成涵盖核心技术、关键系统、支撑平台和智能应用的完备产业链和高端产业群,人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。

——形成一批全球领先的人工智能科技创新和人才培养基地,建成更加完善的人工智能法律法规、伦理规范和政策体系。

(四)总体部署。
发展人工智能是一项事关全局的复杂系统工程,要按照“构建一个体系、把握双重属性、坚持三位一体、强化四大支撑”进行布局,形成人工智能健康持续发展的战略路径。

构建开放协同的人工智能科技创新体系。针对原创性理论基础薄弱、重大产品和系统缺失等重点难点问题,建立新一代人工智能基础理论和关键共性技术体系,布局建设重大科技创新基地,壮大人工智能高端人才队伍,促进创新主体协同互动,形成人工智能持续创新能力。

把握人工智能技术属性和社会属性高度融合的特征。既要加大人工智能研发和应用力度,最大程度发挥人工智能潜力;又要预判人工智能的挑战,协调产业政策、创新政策与社会政策,实现激励发展与合理规制的协调,最大限度防范风险。

坚持人工智能研发攻关、产品应用和产业培育“三位一体”推进。适应人工智能发展特点和趋势,强化创新链和产业链深度融合、技术供给和市场需求互动演进,以技术突破推动领域应用和产业升级,以应用示范推动技术和系统优化。在当前大规模推动技术应用和产业发展的同时,加强面向中长期的研发布局和攻关,实现滚动发展和持续提升,确保理论上走在前面、技术上占领制高点、应用上安全可控。

全面支撑科技、经济、社会发展和国家安全。以人工智能技术突破带动国家创新能力全面提升,引领建设世界科技强国进程;通过壮大智能产业、培育智能经济,为我国未来十几年乃至几十年经济繁荣创造一个新的增长周期;以建设智能社会促进民生福祉改善,落实以人民为中心的发展思想;以人工智能提升国防实力,保障和维护国家安全。
三、重点任务
立足国家发展全局,准确把握全球人工智能发展态势,找准突破口和主攻方向,全面增强科技创新基础能力,全面拓展重点领域应用深度广度,全面提升经济社会发展和国防应用智能化水平。

(一)构建开放协同的人工智能科技创新体系。
围绕增加人工智能创新的源头供给,从前沿基础理论、关键共性技术、基础平台、人才队伍等方面强化部署,促进开源共享,系统提升持续创新能力,确保我国人工智能科技水平跻身世界前列,为世界人工智能发展作出更多贡献。

1.建立新一代人工智能基础理论体系。
聚焦人工智能重大科学前沿问题,兼顾当前需求与长远发展,以突破人工智能应用基础理论瓶颈为重点,超前布局可能引发人工智能范式变革的基础研究,促进学科交叉融合,为人工智能持续发展与深度应用提供强大科学储备。

突破应用基础理论瓶颈。瞄准应用目标明确、有望引领人工智能技术升级的基础理论方向,加强大数据智能、跨媒体感知计算、人机混合智能、群体智能、自主协同与决策等基础理论研究。大数据智能理论重点突破无监督学习、综合深度推理等难点问题,建立数据驱动、以自然语言理解为核心的认知计算模型,形成从大数据到知识、从知识到决策的能力。跨媒体感知计算理论重点突破低成本低能耗智能感知、复杂场景主动感知、自然环境听觉与言语感知、多媒体自主学习等理论方法,实现超人感知和高动态、高维度、多模式分布式大场景感知。混合增强智能理论重点突破人机协同共融的情境理解与决策学习、直觉推理与因果模型、记忆与知识演化等理论,实现学习与思考接近或超过人类智能水平的混合增强智能。群体智能理论重点突破群体智能的组织、涌现、学习的理论与方法,建立可表达、可计算的群智激励算法和模型,形成基于互联网的群体智能理论体系。自主协同控制与优化决策理论重点突破面向自主无人系统的协同感知与交互、自主协同控制与优化决策、知识驱动的人机物三元协同与互操作等理论,形成自主智能无人系统创新性理论体系架构。

布局前沿基础理论研究。针对可能引发人工智能范式变革的方向,前瞻布局高级机器学习、类脑智能计算、量子智能计算等跨领域基础理论研究。高级机器学习理论重点突破自适应学习、自主学习等理论方法,实现具备高可解释性、强泛化能力的人工智能。类脑智能计算理论重点突破类脑的信息编码、处理、记忆、学习与推理理论,形成类脑复杂系统及类脑控制等理论与方法,建立大规模类脑智能计算的新模型和脑启发的认知计算模型。量子智能计算理论重点突破量子加速的机器学习方法,建立高性能计算与量子算法混合模型,形成高效精确自主的量子人工智能系统架构。

开展跨学科探索性研究。推动人工智能与神经科学、认知科学、量子科学、心理学、数学、经济学、社会学等相关基础学科的交叉融合,加强引领人工智能算法、模型发展的数学基础理论研究,重视人工智能法律伦理的基础理论问题研究,支持原创性强、非共识的探索性研究,鼓励科学家自由探索,勇于攻克人工智能前沿科学难题,提出更多原创理论,作出更多原创发现。
专栏1 基础理论
1.大数据智能理论。研究数据驱动与知识引导相结合的人工智能新方法、以自然语言理解和图像图形为核心的认知计算理论和方法、综合深度推理与创意人工智能理论与方法、非完全信息下智能决策基础理论与框架、数据驱动的通用人工智能数学模型与理论等。
2.跨媒体感知计算理论。研究超越人类视觉能力的感知获取、面向真实世界的主动视觉感知及计算、自然声学场景的听知觉感知及计算、自然交互环境的言语感知及计算、面向异步序列的类人感知及计算、面向媒体智能感知的自主学习、城市全维度智能感知推理引擎。
3.混合增强智能理论。研究“人在回路”的混合增强智能、人机智能共生的行为增强与脑机协同、机器直觉推理与因果模型、联想记忆模型与知识演化方法、复杂数据和任务的混合增强智能学习方法、云机器人协同计算方法、真实世界环境下的情境理解及人机群组协同。
4.群体智能理论。研究群体智能结构理论与组织方法、群体智能激励机制与涌现机理、群体智能学习理论与方法、群体智能通用计算范式与模型。
5.自主协同控制与优化决策理论。研究面向自主无人系统的协同感知与交互,面向自主无人系统的协同控制与优化决策,知识驱动的人机物三元协同与互操作等理论。
6.高级机器学习理论。研究统计学习基础理论、不确定性推理与决策、分布式学习与交互、隐私保护学习、小样本学习、深度强化学习、无监督学习、半监督学习、主动学习等学习理论和高效模型。
7.类脑智能计算理论。研究类脑感知、类脑学习、类脑记忆机制与计算融合、类脑复杂系统、类脑控制等理论与方法。
8.量子智能计算理论。探索脑认知的量子模式与内在机制,研究高效的量子智能模型和算法、高性能高比特的量子人工智能处理器、可与外界环境交互信息的实时量子人工智能系统等。
2.建立新一代人工智能关键共性技术体系。
围绕提升我国人工智能国际竞争力的迫切需求,新一代人工智能关键共性技术的研发部署要以算法为核心,以数据和硬件为基础,以提升感知识别、知识计算、认知推理、运动执行、人机交互能力为重点,形成开放兼容、稳定成熟的技术体系。

知识计算引擎与知识服务技术。重点突破知识加工、深度搜索和可视交互核心技术,实现对知识持续增量的自动获取,具备概念识别、实体发现、属性预测、知识演化建模和关系挖掘能力,形成涵盖数十亿实体规模的多源、多学科和多数据类型的跨媒体知识图谱。

跨媒体分析推理技术。重点突破跨媒体统一表征、关联理解与知识挖掘、知识图谱构建与学习、知识演化与推理、智能描述与生成等技术,实现跨媒体知识表征、分析、挖掘、推理、演化和利用,构建分析推理引擎。

群体智能关键技术。重点突破基于互联网的大众化协同、大规模协作的知识资源管理与开放式共享等技术,建立群智知识表示框架,实现基于群智感知的知识获取和开放动态环境下的群智融合与增强,支撑覆盖全国的千万级规模群体感知、协同与演化。

混合增强智能新架构与新技术。重点突破人机协同的感知与执行一体化模型、智能计算前移的新型传感器件、通用混合计算架构等核心技术,构建自主适应环境的混合增强智能系统、人机群组混合增强智能系统及支撑环境。

自主无人系统的智能技术。重点突破自主无人系统计算架构、复杂动态场景感知与理解、实时精准定位、面向复杂环境的适应性智能导航等共性技术,无人机自主控制以及汽车、船舶和轨道交通自动驾驶等智能技术,服务机器人、特种机器人等核心技术,支撑无人系统应用和产业发展。

虚拟现实智能建模技术。重点突破虚拟对象智能行为建模技术,提升虚拟现实中智能对象行为的社会性、多样性和交互逼真性,实现虚拟现实、增强现实等技术与人工智能的有机结合和高效互动。

智能计算芯片与系统。重点突破高能效、可重构类脑计算芯片和具有计算成像功能的类脑视觉传感器技术,研发具有自主学习能力的高效能类脑神经网络架构和硬件系统,实现具有多媒体感知信息理解和智能增长、常识推理能力的类脑智能系统。

自然语言处理技术。重点突破自然语言的语法逻辑、字符概念表征和深度语义分析的核心技术,推进人类与机器的有效沟通和自由交互,实现多风格多语言多领域的自然语言智能理解和自动生成。
专栏2 关键共性技术
1.知识计算引擎与知识服务技术。研究知识计算和可视交互引擎,研究创新设计、数字创意和以可视媒体为核心的商业智能等知识服务技术,开展大规模生物数据的知识发现。
2.跨媒体分析推理技术。研究跨媒体统一表征、关联理解与知识挖掘、知识图谱构建与学习、知识演化与推理、智能描述与生成等技术,开发跨媒体分析推理引擎与验证系统。
3.群体智能关键技术。开展群体智能的主动感知与发现、知识获取与生成、协同与共享、评估与演化、人机整合与增强、自我维持与安全交互等关键技术研究,构建群智空间的服务体系结构,研究移动群体智能的协同决策与控制技术。
4.混合增强智能新架构和新技术。研究混合增强智能核心技术、认知计算框架,新型混合计算架构,人机共驾、在线智能学习技术,平行管理与控制的混合增强智能框架。
5.自主无人系统的智能技术。研究无人机自主控制和汽车、船舶、轨道交通自动驾驶等智能技术,服务机器人、空间机器人、海洋机器人、极地机器人技术,无人车间/智能工厂智能技术,高端智能控制技术和自主无人操作系统。研究复杂环境下基于计算机视觉的定位、导航、识别等机器人及机械手臂自主控制技术。
6.虚拟现实智能建模技术。研究虚拟对象智能行为的数学表达与建模方法,虚拟对象与虚拟环境和用户之间进行自然、持续、深入交互等问题,智能对象建模的技术与方法体系。
7.智能计算芯片与系统。研发神经网络处理器以及高能效、可重构类脑计算芯片等,新型感知芯片与系统、智能计算体系结构与系统,人工智能操作系统。研究适合人工智能的混合计算架构等。
8.自然语言处理技术。研究短文本的计算与分析技术,跨语言文本挖掘技术和面向机器认知智能的语义理解技术,多媒体信息理解的人机对话系统。
3.统筹布局人工智能创新平台。
建设布局人工智能创新平台,强化对人工智能研发应用的基础支撑。人工智能开源软硬件基础平台重点建设支持知识推理、概率统计、深度学习等人工智能范式的统一计算框架平台,形成促进人工智能软件、硬件和智能云之间相互协同的生态链。群体智能服务平台重点建设基于互联网大规模协作的知识资源管理与开放式共享工具,形成面向产学研用创新环节的群智众创平台和服务环境。混合增强智能支撑平台重点建设支持大规模训练的异构实时计算引擎和新型计算集群,为复杂智能计算提供服务化、系统化平台和解决方案。自主无人系统支撑平台重点建设面向自主无人系统复杂环境下环境感知、自主协同控制、智能决策等人工智能共性核心技术的支撑系统,形成开放式、模块化、可重构的自主无人系统开发与试验环境。人工智能基础数据与安全检测平台重点建设面向人工智能的公共数据资源库、标准测试数据集、云服务平台等,形成人工智能算法与平台安全性测试评估的方法、技术、规范和工具集。促进各类通用软件和技术平台的开源开放。各类平台要按照军民深度融合的要求和相关规定,推进军民共享共用。
专栏3 基础支撑平台
1.人工智能开源软硬件基础平台。建立大数据人工智能开源软件基础平台、终端与云端协同的人工智能云服务平台、新型多元智能传感器件与集成平台、基于人工智能硬件的新产品设计平台、未来网络中的大数据智能化服务平台等。
2.群体智能服务平台。建立群智众创计算支撑平台、科技众创服务系统、群智软件开发与验证自动化系统、群智软件学习与创新系统、开放环境的群智决策系统、群智共享经济服务系统。
3.混合增强智能支撑平台。建立人工智能超级计算中心、大规模超级智能计算支撑环境、在线智能教育平台、“人在回路”驾驶脑、产业发展复杂性分析与风险评估的智能平台、支撑核电安全运营的智能保障平台、人机共驾技术研发与测试平台等。
4.自主无人系统支撑平台。建立自主无人系统共性核心技术支撑平台,无人机自主控制以及汽车、船舶和轨道交通自动驾驶支撑平台,服务机器人、空间机器人、海洋机器人、极地机器人支撑平台,智能工厂与智能控制装备技术支撑平台等。
5.人工智能基础数据与安全检测平台。建设面向人工智能的公共数据资源库、标准测试数据集、云服务平台,建立人工智能算法与平台安全性测试模型及评估模型,研发人工智能算法与平台安全性测评工具集。
4.加快培养聚集人工智能高端人才。
把高端人才队伍建设作为人工智能发展的重中之重,坚持培养和引进相结合,完善人工智能教育体系,加强人才储备和梯队建设,特别是加快引进全球顶尖人才和青年人才,形成我国人工智能人才高地。

培育高水平人工智能创新人才和团队。支持和培养具有发展潜力的人工智能领军人才,加强人工智能基础研究、应用研究、运行维护等方面专业技术人才培养。重视复合型人才培养,重点培养贯通人工智能理论、方法、技术、产品与应用等的纵向复合型人才,以及掌握“人工智能+”经济、社会、管理、标准、法律等的横向复合型人才。通过重大研发任务和基地平台建设,汇聚人工智能高端人才,在若干人工智能重点领域形成一批高水平创新团队。鼓励和引导国内创新人才、团队加强与全球顶尖人工智能研究机构合作互动。

加大高端人工智能人才引进力度。开辟专门渠道,实行特殊政策,实现人工智能高端人才精准引进。重点引进神经认知、机器学习、自动驾驶、智能机器人等国际顶尖科学家和高水平创新团队。鼓励采取项目合作、技术咨询等方式柔性引进人工智能人才。统筹利用“千人计划”等现有人才计划,加强人工智能领域优秀人才特别是优秀青年人才引进工作。完善企业人力资本成本核算相关政策,激励企业、科研机构引进人工智能人才。

建设人工智能学科。完善人工智能领域学科布局,设立人工智能专业,推动人工智能领域一级学科建设,尽快在试点院校建立人工智能学院,增加人工智能相关学科方向的博士、硕士招生名额。鼓励高校在原有基础上拓宽人工智能专业教育内容,形成“人工智能+X”复合专业培养新模式,重视人工智能与数学、计算机科学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合。加强产学研合作,鼓励高校、科研院所与企业等机构合作开展人工智能学科建设。

(二)培育高端高效的智能经济。
加快培育具有重大引领带动作用的人工智能产业,促进人工智能与各产业领域深度融合,形成数据驱动、人机协同、跨界融合、共创分享的智能经济形态。数据和知识成为经济增长的第一要素,人机协同成为主流生产和服务方式,跨界融合成为重要经济模式,共创分享成为经济生态基本特征,个性化需求与定制成为消费新潮流,生产率大幅提升,引领产业向价值链高端迈进,有力支撑实体经济发展,全面提升经济发展质量和效益。

1.大力发展人工智能新兴产业。
加快人工智能关键技术转化应用,促进技术集成与商业模式创新,推动重点领域智能产品创新,积极培育人工智能新兴业态,布局产业链高端,打造具有国际竞争力的人工智能产业集群。

智能软硬件。开发面向人工智能的操作系统、数据库、中间件、开发工具等关键基础软件,突破图形处理器等核心硬件,研究图像识别、语音识别、机器翻译、智能交互、知识处理、控制决策等智能系统解决方案,培育壮大面向人工智能应用的基础软硬件产业。

智能机器人。攻克智能机器人核心零部件、专用传感器,完善智能机器人硬件接口标准、软件接口协议标准以及安全使用标准。研制智能工业机器人、智能服务机器人,实现大规模应用并进入国际市场。研制和推广空间机器人、海洋机器人、极地机器人等特种智能机器人。建立智能机器人标准体系和安全规则。

智能运载工具。发展自动驾驶汽车和轨道交通系统,加强车载感知、自动驾驶、车联网、物联网等技术集成和配套,开发交通智能感知系统,形成我国自主的自动驾驶平台技术体系和产品总成能力,探索自动驾驶汽车共享模式。发展消费类和商用类无人机、无人船,建立试验鉴定、测试、竞技等专业化服务体系,完善空域、水域管理措施。

虚拟现实与增强现实。突破高性能软件建模、内容拍摄生成、增强现实与人机交互、集成环境与工具等关键技术,研制虚拟显示器件、光学器件、高性能真三维显示器、开发引擎等产品,建立虚拟现实与增强现实的技术、产品、服务标准和评价体系,推动重点行业融合应用。

智能终端。加快智能终端核心技术和产品研发,发展新一代智能手机、车载智能终端等移动智能终端产品和设备,鼓励开发智能手表、智能耳机、智能眼镜等可穿戴终端产品,拓展产品形态和应用服务。

物联网基础器件。发展支撑新一代物联网的高灵敏度、高可靠性智能传感器件和芯片,攻克射频识别、近距离机器通信等物联网核心技术和低功耗处理器等关键器件。

2.加快推进产业智能化升级。
推动人工智能与各行业融合创新,在制造、农业、物流、金融、商务、家居等重点行业和领域开展人工智能应用试点示范,推动人工智能规模化应用,全面提升产业发展智能化水平。

智能制造。围绕制造强国重大需求,推进智能制造关键技术装备、核心支撑软件、工业互联网等系统集成应用,研发智能产品及智能互联产品、智能制造使能工具与系统、智能制造云服务平台,推广流程智能制造、离散智能制造、网络化协同制造、远程诊断与运维服务等新型制造模式,建立智能制造标准体系,推进制造全生命周期活动智能化。

智能农业。研制农业智能传感与控制系统、智能化农业装备、农机田间作业自主系统等。建立完善天空地一体化的智能农业信息遥感监测网络。建立典型农业大数据智能决策分析系统,开展智能农场、智能化植物工厂、智能牧场、智能渔场、智能果园、农产品加工智能车间、农产品绿色智能供应链等集成应用示范。

智能物流。加强智能化装卸搬运、分拣包装、加工配送等智能物流装备研发和推广应用,建设深度感知智能仓储系统,提升仓储运营管理水平和效率。完善智能物流公共信息平台和指挥系统、产品质量认证及追溯系统、智能配货调度体系等。

智能金融。建立金融大数据系统,提升金融多媒体数据处理与理解能力。创新智能金融产品和服务,发展金融新业态。鼓励金融行业应用智能客服、智能监控等技术和装备。建立金融风险智能预警与防控系统。

智能商务。鼓励跨媒体分析与推理、知识计算引擎与知识服务等新技术在商务领域应用,推广基于人工智能的新型商务服务与决策系统。建设涵盖地理位置、网络媒体和城市基础数据等跨媒体大数据平台,支撑企业开展智能商务。鼓励围绕个人需求、企业管理提供定制化商务智能决策服务。

智能家居。加强人工智能技术与家居建筑系统的融合应用,提升建筑设备及家居产品的智能化水平。研发适应不同应用场景的家庭互联互通协议、接口标准,提升家电、耐用品等家居产品感知和联通能力。支持智能家居企业创新服务模式,提供互联共享解决方案。

3.大力发展智能企业。
大规模推动企业智能化升级。支持和引导企业在设计、生产、管理、物流和营销等核心业务环节应用人工智能新技术,构建新型企业组织结构和运营方式,形成制造与服务、金融智能化融合的业态模式,发展个性化定制,扩大智能产品供给。鼓励大型互联网企业建设云制造平台和服务平台,面向制造企业在线提供关键工业软件和模型库,开展制造能力外包服务,推动中小企业智能化发展。

推广应用智能工厂。加强智能工厂关键技术和体系方法的应用示范,重点推广生产线重构与动态智能调度、生产装备智能物联与云化数据采集、多维人机物协同与互操作等技术,鼓励和引导企业建设工厂大数据系统、网络化分布式生产设施等,实现生产设备网络化、生产数据可视化、生产过程透明化、生产现场无人化,提升工厂运营管理智能化水平。

加快培育人工智能产业领军企业。在无人机、语音识别、图像识别等优势领域加快打造人工智能全球领军企业和品牌。在智能机器人、智能汽车、可穿戴设备、虚拟现实等新兴领域加快培育一批龙头企业。支持人工智能企业加强专利布局,牵头或参与国际标准制定。推动国内优势企业、行业组织、科研机构、高校等联合组建中国人工智能产业技术创新联盟。支持龙头骨干企业构建开源硬件工厂、开源软件平台,形成集聚各类资源的创新生态,促进人工智能中小微企业发展和各领域应用。支持各类机构和平台面向人工智能企业提供专业化服务。

4.打造人工智能创新高地。
结合各地区基础和优势,按人工智能应用领域分门别类进行相关产业布局。鼓励地方围绕人工智能产业链和创新链,集聚高端要素、高端企业、高端人才,打造人工智能产业集群和创新高地。

开展人工智能创新应用试点示范。在人工智能基础较好、发展潜力较大的地区,组织开展国家人工智能创新试验,探索体制机制、政策法规、人才培育等方面的重大改革,推动人工智能成果转化、重大产品集成创新和示范应用,形成可复制、可推广的经验,引领带动智能经济和智能社会发展。

建设国家人工智能产业园。依托国家自主创新示范区和国家高新技术产业开发区等创新载体,加强科技、人才、金融、政策等要素的优化配置和组合,加快培育建设人工智能产业创新集群。

建设国家人工智能众创基地。依托从事人工智能研究的高校、科研院所集中地区,搭建人工智能领域专业化创新平台等新型创业服务机构,建设一批低成本、便利化、全要素、开放式的人工智能众创空间,完善孵化服务体系,推进人工智能科技成果转移转化,支持人工智能创新创业。

(三)建设安全便捷的智能社会。
围绕提高人民生活水平和质量的目标,加快人工智能深度应用,形成无时不有、无处不在的智能化环境,全社会的智能化水平大幅提升。越来越多的简单性、重复性、危险性任务由人工智能完成,个体创造力得到极大发挥,形成更多高质量和高舒适度的就业岗位;精准化智能服务更加丰富多样,人们能够最大限度享受高质量服务和便捷生活;社会治理智能化水平大幅提升,社会运行更加安全高效。

1.发展便捷高效的智能服务。
围绕教育、医疗、养老等迫切民生需求,加快人工智能创新应用,为公众提供个性化、多元化、高品质服务。

智能教育。利用智能技术加快推动人才培养模式、教学方法改革,构建包含智能学习、交互式学习的新型教育体系。开展智能校园建设,推动人工智能在教学、管理、资源建设等全流程应用。开发立体综合教学场、基于大数据智能的在线学习教育平台。开发智能教育助理,建立智能、快速、全面的教育分析系统。建立以学习者为中心的教育环境,提供精准推送的教育服务,实现日常教育和终身教育定制化。

智能医疗。推广应用人工智能治疗新模式新手段,建立快速精准的智能医疗体系。探索智慧医院建设,开发人机协同的手术机器人、智能诊疗助手,研发柔性可穿戴、生物兼容的生理监测系统,研发人机协同临床智能诊疗方案,实现智能影像识别、病理分型和智能多学科会诊。基于人工智能开展大规模基因组识别、蛋白组学、代谢组学等研究和新药研发,推进医药监管智能化。加强流行病智能监测和防控。

智能健康和养老。加强群体智能健康管理,突破健康大数据分析、物联网等关键技术,研发健康管理可穿戴设备和家庭智能健康检测监测设备,推动健康管理实现从点状监测向连续监测、从短流程管理向长流程管理转变。建设智能养老社区和机构,构建安全便捷的智能化养老基础设施体系。加强老年人产品智能化和智能产品适老化,开发视听辅助设备、物理辅助设备等智能家居养老设备,拓展老年人活动空间。开发面向老年人的移动社交和服务平台、情感陪护助手,提升老年人生活质量。

2.推进社会治理智能化。
围绕行政管理、司法管理、城市管理、环境保护等社会治理的热点难点问题,促进人工智能技术应用,推动社会治理现代化。

智能政务。开发适于政府服务与决策的人工智能平台,研制面向开放环境的决策引擎,在复杂社会问题研判、政策评估、风险预警、应急处置等重大战略决策方面推广应用。加强政务信息资源整合和公共需求精准预测,畅通政府与公众的交互渠道。

智慧法庭。建设集审判、人员、数据应用、司法公开和动态监控于一体的智慧法庭数据平台,促进人工智能在证据收集、案例分析、法律文件阅读与分析中的应用,实现法院审判体系和审判能力智能化。

智慧城市。构建城市智能化基础设施,发展智能建筑,推动地下管廊等市政基础设施智能化改造升级;建设城市大数据平台,构建多元异构数据融合的城市运行管理体系,实现对城市基础设施和城市绿地、湿地等重要生态要素的全面感知以及对城市复杂系统运行的深度认知;研发构建社区公共服务信息系统,促进社区服务系统与居民智能家庭系统协同;推进城市规划、建设、管理、运营全生命周期智能化。

智能交通。研究建立营运车辆自动驾驶与车路协同的技术体系。研发复杂场景下的多维交通信息综合大数据应用平台,实现智能化交通疏导和综合运行协调指挥,建成覆盖地面、轨道、低空和海上的智能交通监控、管理和服务系统。

智能环保。建立涵盖大气、水、土壤等环境领域的智能监控大数据平台体系,建成陆海统筹、天地一体、上下协同、信息共享的智能环境监测网络和服务平台。研发资源能源消耗、环境污染物排放智能预测模型方法和预警方案。加强京津冀、长江经济带等国家重大战略区域环境保护和突发环境事件智能防控体系建设。

3.利用人工智能提升公共安全保障能力。
促进人工智能在公共安全领域的深度应用,推动构建公共安全智能化监测预警与控制体系。围绕社会综合治理、新型犯罪侦查、反恐等迫切需求,研发集成多种探测传感技术、视频图像信息分析识别技术、生物特征识别技术的智能安防与警用产品,建立智能化监测平台。加强对重点公共区域安防设备的智能化改造升级,支持有条件的社区或城市开展基于人工智能的公共安防区域示范。强化人工智能对食品安全的保障,围绕食品分类、预警等级、食品安全隐患及评估等,建立智能化食品安全预警系统。加强人工智能对自然灾害的有效监测,围绕地震灾害、地质灾害、气象灾害、水旱灾害和海洋灾害等重大自然灾害,构建智能化监测预警与综合应对平台。

4.促进社会交往共享互信。
充分发挥人工智能技术在增强社会互动、促进可信交流中的作用。加强下一代社交网络研发,加快增强现实、虚拟现实等技术推广应用,促进虚拟环境和实体环境协同融合,满足个人感知、分析、判断与决策等实时信息需求,实现在工作、学习、生活、娱乐等不同场景下的流畅切换。针对改善人际沟通障碍的需求,开发具有情感交互功能、能准确理解人的需求的智能助理产品,实现情感交流和需求满足的良性循环。促进区块链技术与人工智能的融合,建立新型社会信用体系,最大限度降低人际交往成本和风险。

(四)加强人工智能领域军民融合。
深入贯彻落实军民融合发展战略,推动形成全要素、多领域、高效益的人工智能军民融合格局。以军民共享共用为导向部署新一代人工智能基础理论和关键共性技术研发,建立科研院所、高校、企业和军工单位的常态化沟通协调机制。促进人工智能技术军民双向转化,强化新一代人工智能技术对指挥决策、军事推演、国防装备等的有力支撑,引导国防领域人工智能科技成果向民用领域转化应用。鼓励优势民口科研力量参与国防领域人工智能重大科技创新任务,推动各类人工智能技术快速嵌入国防创新领域。加强军民人工智能技术通用标准体系建设,推进科技创新平台基地的统筹布局和开放共享。

(五)构建泛在安全高效的智能化基础设施体系。
大力推动智能化信息基础设施建设,提升传统基础设施的智能化水平,形成适应智能经济、智能社会和国防建设需要的基础设施体系。加快推动以信息传输为核心的数字化、网络化信息基础设施,向集融合感知、传输、存储、计算、处理于一体的智能化信息基础设施转变。优化升级网络基础设施,研发布局第五代移动通信(5G)系统,完善物联网基础设施,加快天地一体化信息网络建设,提高低时延、高通量的传输能力。统筹利用大数据基础设施,强化数据安全与隐私保护,为人工智能研发和广泛应用提供海量数据支撑。建设高效能计算基础设施,提升超级计算中心对人工智能应用的服务支撑能力。建设分布式高效能源互联网,形成支撑多能源协调互补、及时有效接入的新型能源网络,推广智能储能设施、智能用电设施,实现能源供需信息的实时匹配和智能化响应。
专栏4 智能化基础设施
1.网络基础设施。加快布局实时协同人工智能的5G增强技术研发及应用,建设面向空间协同人工智能的高精度导航定位网络,加强智能感知物联网核心技术攻关和关键设施建设,发展支撑智能化的工业互联网、面向无人驾驶的车联网等,研究智能化网络安全架构。加快建设天地一体化信息网络,推进天基信息网、未来互联网、移动通信网的全面融合。
2.大数据基础设施。依托国家数据共享交换平台、数据开放平台等公共基础设施,建设政府治理、公共服务、产业发展、技术研发等领域大数据基础信息数据库,支撑开展国家治理大数据应用。整合社会各类数据平台和数据中心资源,形成覆盖全国、布局合理、链接畅通的一体化服务能力。
3.高效能计算基础设施。继续加强超级计算基础设施、分布式计算基础设施和云计算中心建设,构建可持续发展的高性能计算应用生态环境。推进下一代超级计算机研发应用。
(六)前瞻布局新一代人工智能重大科技项目。
针对我国人工智能发展的迫切需求和薄弱环节,设立新一代人工智能重大科技项目。加强整体统筹,明确任务边界和研发重点,形成以新一代人工智能重大科技项目为核心、现有研发布局为支撑的“1+N”人工智能项目群。

“1”是指新一代人工智能重大科技项目,聚焦基础理论和关键共性技术的前瞻布局,包括研究大数据智能、跨媒体感知计算、混合增强智能、群体智能、自主协同控制与决策等理论,研究知识计算引擎与知识服务技术、跨媒体分析推理技术、群体智能关键技术、混合增强智能新架构与新技术、自主无人控制技术等,开源共享人工智能基础理论和共性技术。持续开展人工智能发展的预测和研判,加强人工智能对经济社会综合影响及对策研究。

“N”是指国家相关规划计划中部署的人工智能研发项目,重点是加强与新一代人工智能重大科技项目的衔接,协同推进人工智能的理论研究、技术突破和产品研发应用。加强与国家科技重大专项的衔接,在“核高基”(核心电子器件、高端通用芯片、基础软件)、集成电路装备等国家科技重大专项中支持人工智能软硬件发展。加强与其他“科技创新2030—重大项目”的相互支撑,加快脑科学与类脑计算、量子信息与量子计算、智能制造与机器人、大数据等研究,为人工智能重大技术突破提供支撑。国家重点研发计划继续推进高性能计算等重点专项实施,加大对人工智能相关技术研发和应用的支持;国家自然科学基金加强对人工智能前沿领域交叉学科研究和自由探索的支持。在深海空间站、健康保障等重大项目,以及智慧城市、智能农机装备等国家重点研发计划重点专项部署中,加强人工智能技术的应用示范。其他各类科技计划支持的人工智能相关基础理论和共性技术研究成果应开放共享。

创新新一代人工智能重大科技项目组织实施模式,坚持集中力量办大事、重点突破的原则,充分发挥市场机制作用,调动部门、地方、企业和社会各方面力量共同推进实施。明确管理责任,定期开展评估,加强动态调整,提高管理效率。
四、资源配置
充分利用已有资金、基地等存量资源,统筹配置国际国内创新资源,发挥好财政投入、政策激励的引导作用和市场配置资源的主导作用,撬动企业、社会加大投入,形成财政资金、金融资本、社会资本多方支持的新格局。

(一)建立财政引导、市场主导的资金支持机制。
统筹政府和市场多渠道资金投入,加大财政资金支持力度,盘活现有资源,对人工智能基础前沿研究、关键共性技术攻关、成果转移转化、基地平台建设、创新应用示范等提供支持。利用现有政府投资基金支持符合条件的人工智能项目,鼓励龙头骨干企业、产业创新联盟牵头成立市场化的人工智能发展基金。利用天使投资、风险投资、创业投资基金及资本市场融资等多种渠道,引导社会资本支持人工智能发展。积极运用政府和社会资本合作等模式,引导社会资本参与人工智能重大项目实施和科技成果转化应用。

(二)优化布局建设人工智能创新基地。
按照国家级科技创新基地布局和框架,统筹推进人工智能领域建设若干国际领先的创新基地。引导现有与人工智能相关的国家重点实验室、企业国家重点实验室、国家工程实验室等基地,聚焦新一代人工智能的前沿方向开展研究。按规定程序,以企业为主体、产学研合作组建人工智能领域的相关技术和产业创新基地,发挥龙头骨干企业技术创新示范带动作用。发展人工智能领域的专业化众创空间,促进最新技术成果和资源、服务的精准对接。充分发挥各类创新基地聚集人才、资金等创新资源的作用,突破人工智能基础前沿理论和关键共性技术,开展应用示范。

(三)统筹国际国内创新资源。
支持国内人工智能企业与国际人工智能领先高校、科研院所、团队合作。鼓励国内人工智能企业“走出去”,为有实力的人工智能企业开展海外并购、股权投资、创业投资和建立海外研发中心等提供便利和服务。鼓励国外人工智能企业、科研机构在华设立研发中心。依托“一带一路”战略,推动建设人工智能国际科技合作基地、联合研究中心等,加快人工智能技术在“一带一路”沿线国家推广应用。推动成立人工智能国际组织,共同制定相关国际标准。支持相关行业协会、联盟及服务机构搭建面向人工智能企业的全球化服务平台.
 
 
[ 资讯搜索 ]  [ ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]  [ 返回顶部 ]

 
0条 [查看全部]  相关评论

 
推荐图文
推荐资讯
点击排行
随机新闻
网站首页 | 联系方式 | 使用协议 | 合作项目 | 服务指南 | 愿景 Vision | 关于我们 | 网站地图 | 友情链接 | 网站留言 | 广告服务
全球首家“媒体化产业化系统化O2O化资本化”五化融合推广试点平台
新闻传媒中心/产业研究中心/协同创新中心/整合营销顾问中心/百万品牌价值整合营销营运系统解决方案
金模网首创产融G模式 品牌媒体资源/产业集群研究/全网整合营销/网络营销培训/O2O创业孵化/互联网金融/股权众筹科技
独特的互联网O2O商业模式,专注线上千亿产业集群价值链战略资源整合,线下百万单打隐形冠军、基业长青、战略联盟企业品牌整合营销顾问式管理咨询
华人新闻营销第一站、亚洲全网营销系统创业孵化基地、中国狼鹰文化O2O整合营销产学研融资模式创始人、互联网+全球创客生态链服务商。服务热线:13686831949 合作咨询
Powered by D-T©2010-2015 Gmold.info All Rights Reserved 粤ICP备11048273号